26 research outputs found

    GNSS in Precision Agricultural Operations

    Get PDF
    Today, there are two Global Navigation Satellite Systems (GNSS) that are fully operational and commercially available to provide all-weather guidance virtually 24 h a day anywhere on the surface of the earth. GNSS are the collection of localization systems that use satellites to know the location of a user receiver in a global (Earth-centered) coordinate system and this has become the positioning system of choice for precision agriculture technologies. At present North American Positioning System known as Navigation by Satellite Timing and Ranging Global Position System (NAVSTAR GPS or simply GPS) and Russian Positioning System known as Globalnaya Navigatsionnaya Sputnikovaya Sistema or Global Navigation Satellite System (GLONASS) both qualify as GNSS. Two other satellite localization systems, Galileo (European Union) and Compass (Chinese), are expected to achieve full global coverage capability by 2020. Detailed information on GNSS technology is plentiful, and there are many books that provide a complete description of these navigation systems [9- 11]. But the focus of this chapter is on the applications of GPS in agricultural operations. These applications include positioning of operating machines, soil sampling, variable rate application and vehicle guidance.Comisión Europea FP7/2007-201

    Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Get PDF
    BackgroundRacetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.ObjectiveTo develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.MethodsTrack-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.ResultsMost dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.ConclusionsLaboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD).Potential relevanceDynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions

    Chapter GNSS in Precision Agricultural Operations

    Get PDF
    Alternative & renewable energy sources & technolog

    Overinflated tractor tires waste fuel, reduce productivity

    No full text
    Under typical California farming conditions, field experiments have shown that using a low/correct inflation pressure for radial ply tires can result in significant sayings in time and money. It can also lessen soil compaction and help control power-hop in mechanical front-wheel drive and four-wheel drive tractors. In tilled, moist Capay clay soil, the tractor using low/correct tire pressure required 20% less diesel fuel and productivity increased 5.7% during the same stubble-disking operation

    Crust-breaking device improves water infiltration into furrows

    No full text
    Surface irrigation may lead to thick depositional crusts at the soil surface, which can reduce infiltration rate. To break the crust on the sides of the bed near the bottom of a furrow, we developed a torpedo-shaped, winged cultivator. Field experiments were conducted on a tomato crop at UC Davis on Yolo loam soil during the summer of 1992. Breaking the crust with the device increased cumulative infiltration significantly, by almost 30%

    Autoguidance system operated at high speed causes almost no tomato damage

    No full text
    This project explored the effectiveness of an autoguidance system based on a real-time kinematic global positioning system (RTK GPS) accurate to the centimeter (about half-inch) in agricultural production. Our objectives were to determine the effect of spacing between cultivator disks or knives and forward tractor speed on plant damage, and of deep tillage operations on drip-tape damage. Two sets of split-plot field experiments were conducted (with processing tomato transplants and direct-seeded tomatoes) in a Yolo loam field on the UC Davis campus. No significant plant damage occurred even at 7 miles per hour (mph) forward speed and cultivator disk spacing of 2 inches from the plant line. In an additional split-plot test, there was no significant damage to drip tape when the fertilizer shank was operated 2 inches from the drip tape at 3.5 mph. This system allows for automatic steering of the tractor and implements along a path close to buried drip-tape and/or plants without damaging them, even at high operational ground speeds
    corecore